
Opinion Formation with the Evolution of Network 
Fei Xiong1, Yun Liu1, Jiang Zhu2, Ying Zhang2 

 
1 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education 

Beijing Jiaotong University 
Beijing, 100044, China 

{08111029, liuyun}@bjtu.edu.cn 
2 Carnegie Mellon University, Silicon Valley 

Moffett Field, CA 94035, USA 
 

Abstract: We analyze users’ behavior in Tianya online forum, and find great fluctuations exist in the 
amount of agents that participate in interactions. Therefore we present a model that includes the co-
evolving dynamics of network and opinions. New nodes are added to network gradually, promoting the 
total size of the system. On the other side, old nodes which feel tired of the topic may withdraw interac-
tions. The rule of continuous opinion exchanges is applied in the dynamics, and only active agents can 
update their opinions and build connections with new nodes. Simulation results show topological and 
individual dissipative features of our model are analogous to the Tianya network. Our network is a 
scale-free and small-world network. Unlike other opinion models, if the tolerance parameter is small, 
more disordering will be caused in our model with the time elapsed. For a large tolerance parameter, 
the number of clusters declines, and only one macroscopic-size cluster exists at last. We also realize a 
first-order phase transition where the second-largest cluster is incorporated into the largest one. 
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1. Introduction  
Nowadays, Internet has greatly developed, and a large 
part of people search, read and publish information on it 
instead of traditional media. Many applications on Inter-
net break forth and get improved. At present, Web 2.0 
has become very popular, including microblogs[1], bulle-
tin board systems (BBS)[2], social networking sites[3], etc. 
Lots of researchers concentrate on these real networks, 
aiming to investigate the topological characteristics and 
network growth. It is proved that Internet is not only a 
scale-free network, but also displays small-world proper-
ties[4]. Barabasi and Albert (BA) presented a network 
model with preferential attachment mechanism. The de-
gree of nodes follows a power law, and the clustering 
coefficient declines swiftly as the network size in-
creases[5]. Watts and Strogatz built a small-world net-
work by randomly reconnecting edges of regular lattices, 
but this network doesn’t have a power-law degree distri-
bution[6]. Inspired by their work, plenty of models were 
proposed, describing a certain kind of real network[7,8]. 

At the same time, information interactions in these 
networks also attract much attention, such as rumor dif-
fusion, opinion evolution. Opinion dynamics tries to ex-
plain and forecast the formation of public opinion, ex-
ploring the condition of phase transition[9]. Statistical 
physics is applied to attain macroscopic features of a 
finite-size system[10]. There are already abundant basic 
opinion models with different interacting rules, that is, 
the Sznajd model[11,12], the voter model[13,14], the Deffuant 
model[15], the Hegselmann-Krause model[16], and so on. 

Based on these dynamic models, extensive research has 
been carried out. In [17], mobility of agents is introduced 
to the CODA model in small-world networks, so agents 
are allowed to change their positions. The number of 
extremists in the group decreases significantly. R. Lam-
biotte presented a non-conservative voter model where 
the opinion of an agent depends non-linearly on the frac-
tion of disagreeing neighbors, making the average mag-
netization between zero and consensus[18]. Wu et al. sup-
posed that agents would adopt the most common opinion 
that exceeds a threshold value, and he found an interme-
diate metastable state during the evolution[19]. Sven 
Banisch used empirical data to explain opinion exchange 
dynamics, and his model performed similar transient 
opinion configurations as the electoral performance of 
candidates[20]. 

Interplays between opinion evolution and topology 
evolution have been taken into consideration. The recon-
necting of network may accelerate the formation of large 
clusters, or divide these clusters into fragment[21,22]. Pre-
sent studies consider the system is fixed with a finite size. 
Although agents can change their ideas and relations, but 
the number of agents in interactions keeps identical all 
along. However, in real networks, the underlying net-
work is growing during the opinion dynamics. For in-
stance, on Internet new users enter the network step by 
step, but meantime old users may lose their interests, and 
drop out of discussions, preventing the occurrence of 
consensus. Users can only remain active in a finite period 
of time, and the size of population changes all the time. 



Fluctuations of system size have a vital influence on 
opinion formation, so the growing of network can not be 
ignored. In this paper, we put forward an opinion model 
in consideration of the growth and recession of network. 
We research into the problems of network characteristics 
and opinion clusters, and we also analyze the dissipative 
features of Tianya BBS, and compare this real network 
with our model. 

We will introduce our work as follows. We analyze the 
features of Tianya BBS in Section 2. Section 3 presents a 
model with the coevolution of network and opinions. In 
Section 4 simulation results about the model are included. 
We close the paper in Section 4 with concluding remarks. 

2. Interacting network of Tianya BBS 
Tianya BBS (www.tianya.cn) has become one of the 
most famous online forums in China. As a typical repre-
sentative of Web2.0, Tianya BBS provides a public cir-
cumstance for users to present their opinions and discuss 
with other people. Till August 2011, there are more than 
56 million users existing in this network, and the number 
of online active users stays above one million. Because 
of this large quantity of population, Tianya network is 
sometimes the original source of online emergency. 
Therefore analyzing the characteristics of this network 
can help us to understand the formation of public opinion 
on Internet. We collected data from one section (Zatan) 
of this network by our directed crawler. Theme posts and 
their replies were gained, as well as user relations. More 
than three million posts and replies from 2002 to 2009 
were downloaded after 8 hours’ crawling.  In the network, 
nodes represent users, and the relation between nodes is 
built after a user replies a post author. 
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Figure 1. Distribution function of number of post’s active 
days for Tianya BBS 

As mentioned in [23], the network has a power-law 
degree distribution, and high clustering coefficients. It is 
scale-free and small-world. Here we focus on the evolu-
tion of network and the variation of active users. We pay 
attention to the size of interacting users.  Figure 1 shows 
the distribution of posts’ active time in Tianya network. 
The active time of a post begins when the author creates 

it, and the post dies out after the last user replies it. It is 
obvious that the number of posts’ active days decays as a 
power law. A large part of posts become extinct in less 
than 3 months, but several posts can last for more than 
1000 days. After 3 years, there are still some users dis-
cussing in the post. Therefore the interacting time of top-
ics differs a lot from each other.  
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Figure 2. Distribution function of number of daily active 

users for Tianya BBS 

We calculate the amount of daily active users that at 
least publish a post or a reply on that day, as shown in 
Figure 2. The distribution of active users on every day 
follows a power law. The distribution function has a 
longer tail, implying the network has a relatively large 
size of interacting population. The longe tail results from 
the phenomenon that many new users register and login 
the forum. There are still 0.002 proportion of days on 
which more than 700 users interact with other people in 
the section of Tianya BBS. We notice that the largest 
number of daily active users exceeds 10 thousand. How-
ever, it is very frequent that only 2 or 3 users discuss 
some topics in the network on a day. Figure 3 illustrates 
the distribution of amount of users’ active days on which 
they join in discussions. Clearly, this amount declines as 
a power law. Most of users drop out of the evolution of 
network quickly. Users will never be active in the net-
work for more than 1000 days. Thus users have ex-
tremely imbalanced active time. 

From above results, we realize that the interacting sys-
tem is no longer fixed, and its size changes every day. A 
great many new users arrive day by day, and plenty of 
existing users lose their interests gradually and withdraw 
the network. Only a few users can persist in interacting 
for long. Opinion formation is accompanied by the 
growth and recession of network, and actions and reac-
tions exist in the process of opinion and network evolu-
tion. Since many users keep away from discussions, their 
opinions can not be changed, and they don’t have enough 
opportunities to persuade others. The dissipation of net-
work prevents the formation of consensus, and may lead 
the system to fragmentation. This agrees with the situa-
tion that consensus is not always reached on Internet.  
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Figure 3. Distribution function of number of users’ days 
for discussion in Tianya BBS 

3. The model 
The real society especially Internet is a nonlinear dissipa-
tive system. Agents meet new people every day, and con-
tact with different communicatees. Thus their local 
neighborhoods are changing during the whole evolution. 
The underlying network mediates opinion exchanges, but 
it is influenced by individual opinions notably. The dy-
namics of network need to be included in the process of 
opinion interaction. 

In the Deffuant model, a population of N  agents are 
located on nodes of a network that describes the relations 
between agents. Individual opinions are continuous tak-
ing value from ( )0,1 . An agent’s opinion σ  expresses its 
attitude towards an event in society. The opinion  0.5σ >  
means the agent consents the event, and vice versa. In an 
update, an agent i  and one of its neighbors j are selected 
at random. If the distance d  between the two agents’ 
opinions stays below the parameter ε  of bounded confi-
dence, that is, j id σ σ ε= − ≤ , these two agents will 
change their opinions in accordance with each other. 
Otherwise, no opinion exchange takes place. Time is 
increased by 1 after N  such updates. 

Based on the Deffuant interacting rule, we introduce 
our model as follow. The evolution begins in an initially 
small-size network. At first, there are several agents in 
the network, and they are randomly connected. Since 
agents may lose their activity and drop out of discussion, 
only active agents can take part in opinion exchanges or 
network evolution. In an update, an active agent i  with 
its node degree k  and one of its neighbors j  (no matter 
what activity the neighbor is) are picked out. If they have 
similar opinions, agent i  will adapt its opinion close to 
its neighbor. The active agent changes its opinion follow-
ing the rule, i.e. ( )0.5i i j iσ σ σ σ= + ⋅ − , if d ε≤ . On the 
contrary, when the difference of their opinions exceeds 
the tolerance value, the active agent i  may become inac-
tive and stop discussing. People always would like to 

communicate with others of similar belief, but they avoid 
to debate with contrarians[21,24]. Agent i  quits the discus-
sion with the probability 1 k  that is inversely propor-
tional to the degree of agent. It is natural that positive 
agents contact with others frequently, and make connec-
tions with lots of friends. Therefore they have a large 
degree, and are reluctant to stop interactions. Meanwhile, 
at each time step, a new agent is added to the network, 
randomly connected to n  active nodes that already exist 
in the network. 

As mentioned above, the dynamics of network and 
opinions take place synchronously. If no active agent 
exists in the network, new nodes can not connect to old 
nodes, so the dynamics is frozen immediately. Otherwise, 
new nodes are introduced until the total system size N  
reaches a given value. However, the dynamics will go on 
unless all agents become inactive or no opinion exchange 
occurs, implying the system achieves a stable state. 

4. Simulation Results 
Now we will implement Monte-Carlo simulations to in-
vestigate the elaborate coevolution of agents’ opinions 
and their relations. All individual opinions are assigned 
randomly from ( )0,1  in the beginning. Without loss of 
generality we assure that there are 20 active agents in the 
initial network, and this quantity will not influence the 
macroscopic dynamics. We will explore the network 
characteristics and opinion distribution of our model. 

4.1. The Network 
We study the effect of opinion evolution on the network, 
and how individual bounded confidence changes connec-
tions between agents. Though these inactive agents par-
ticipate in interactions no longer, their opinions are al-
ready published, and can influence other active agents. 
Therefore the statistical features of these dormant agents 
should be taken into account. 

Figure 4 represents the final degree distribution ( )P k  
of the network created by our model. ( )P k of this net-
work is power-law, that is, ( )P k k γ−∝ . The power expo-
nent γ  is 2.721, and it depends on individual bounded 
confidence. Though new nodes are linked to old ones at 
random, but all nodes will become inert with a rate that is 
closely related to their degrees. It means nodes having 
more neighbors are less likely to keep away from the 
evolution. As only active nodes can receive links, nodes 
with a large degree have more priority to enlarge their 
connectivity. The action can be regarded as a modified 
mechanism of preferential attachment. Moreover, the 
shortest average path length of our network is 3.48, and 
the clustering coefficient is 0.2660 that stays much higher 
than the BA network. The power-law degree distribution 
and high clustering suggest our network is a scale-free 
and small-world network. 
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Figure 4. Degree distribution of our network, 5n = , and 
0.2ε = . The final size of  all agents N  is 1000. The result 

is an average of 100 realizations. 
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Figure 5. Distribution of number of nodes’ time steps for 
discussion in our model, 1000N = , 5n =  and 0.2ε = . 

The proportion of agents with different active time 
also decays as a power law (Fig. 5). Large parts of agents 
only attend the topic for a while, and not more than one 
agent on average can persist in discussing for longer than 
100 time steps. Not all agents which enter the network 
early have a long active time, so individual activity has 
nothing to do with its existence time. This outcome coin-
cides with that of Tianya network. 

4.2. Opinions 
With the evolution of network, agents holding similar 
opinions merge together to form large clusters, but large 
divergence between individual opinions may make active 
nodes stop discussing. As shown in Fig. 6, for a large 
tolerance value, the number of opinion clusters increases 
gently at the early stage. New nodes enter the network 
gradually with random opinions. At that time, though 
existing active agents change their opinions and form 
large clusters, the process of network evolution plays a 
significantly main role to create new opinion clusters. 
After time 800, the process of opinion evolution is in a 
dominant position. In the stable state, several large clus-
ters are left in the system. The number of opinion clusters 
will reach a plateau after a transitory decreasing. How-

ever, with small ε , the amount of opinion clusters al-
ways rises till a stable level, leading to the fragmentation 
state. The system becomes more chaotic with the coevo-
lution of network and opinions. This means if a dynamic 
system is lack of trust, more disordering will be caused 
with time elapsed. Gini coefficient that is used in eco-
nomics first, can be regarded as the distribution charac-
teristic of agents holding different opinions[15]. The larger 
the Gini coefficient is, the fewer opinions agents focus on. 
The Gini coefficient increases linearly with time, and at 
last it will level off (in Fig. 7). Unlike the amount of 
opinion clusters, the process of opinion evolution takes 
an important effect on Gini coefficient all the time. 
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Figure 6. Time plot of number of opinion 

clusters , 1000N =  and 10n = . 
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Figure 7. Gini coefficient as a function of tim, 1000N =  

and 10n = . 

From Fig. 8, the size of largest opinion cluster in-
creases with the tolerance parameter monotonously. The 
size of second-largest cluster has a small increment with 
ε , but this cluster will be incorporated into the largest 
one. When 0.5ε > , the system approaches the consensus 
state with one single macroscopic-size cluster present in 
the final state. The second-largest cluster becomes most 
apparent for 0.2ε = , and two large-size clusters coexist 
in the end. Raising average degree of the network 
enlarges macroscopic clusters, but can not influence the 
first-order phase transition in the thermodynamic limit. 
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Figure 8. Size of largest opinion cluster and second-largest 

opinion cluster versus ε , for 1000N = . 

5. Conclusions 
In this paper, we have studied the effect of network 

evolution on opinion dynamics, and the reaction of opin-
ions to network. Growth and recession exist in the dy-
namic process, making the system size change each time. 
Only active agents are likely to change their opinions. 
We have explored the topological features of the network 
and dissipative behavior of agents, and opinion distribu-
tion and convergence are also shown.  

Clearly, the network in our model has a power-law de-
gree distribution, and topological and users’ dissipative 
features are in agreement with some real BBS networks. 
The Gini coefficient increases with time, implying indi-
vidual opinions are changed close to each other. How-
ever, the number of opinion clusters increases with the 
occurrence of new agents, so the network growing takes 
the main effect at that stage. A large tolerance parameter 
can decrease the number of clusters, enlarging macro-
scopic-size clusters. In future work, we will use statistical 
natural language processing to analyze the real BBS topic 
data and verify our model. 
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